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Abstract

Image Segmentation has always been one of the challenging tasks in computer
vision with its applications in medical imaging, remote sensing, robotics, surveil-
lance, etc. There have been many mathematical models originating as early as the
1970s. Chan-Vese segmentation is one of the models that doesn’t consider edges
into account when solving the segmentation problem. However, the original pro-
posed Chan-Vese algorithm was for 2 phase segmentation and grayscale images. In
this report, we’ll look at the original Chan-Vese and its extensions to multi-phase
segmentation and RGB images.

1 Introduction

We can define the task of segmentation to divide the image into multiple segments. Active
Contour has been a very common framework for this task. They are designed to solve
problems where the approximate shape of the boundary is known. Essentially, it is an
energy-minimizing, deformable spline influenced by constraint and image forces that pull
it towards object contours and internal forces that resist deformation. In images, these
energies come from features, like lines and edges.

One of the basic ideas in active contours is to evolve a curve, have some stopping
condition for that curve, and thus segment the image or detect some objects. In classical
active contour models, generally, this stopping condition is the edge detector, i.e., stop
the curve motion once the edge is detected. Consider an image u0, we can define our
edge detector function g as

g(|∇u0|) =
1

1 + |∇Gσ ∗ u0|2
(1)

where G is Gaussian filter with some σ to smooth the image. The curve evolves by a
variant of the mean curvature motion [8] having this edge function as an extra factor in
the velocity. On the edges, the gradient will tend towards infinity and this function will
approach 0, thus stopping the curve motion.

In the case of images, the gradients are discrete and bounded. This poses two major
issues with classical active contours based on edges -

1. The gradients are discrete and bounded in the case of images. So the stopping
function g will not go to 0 and thus the curve may pass through the edges.
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2. For noisy images, the Gaussian smoothing has to be strong, otherwise the noise
may get detected as an edge too. However, this smoothing can smooth the edges
too.

Chan-Vese paper [1] proposed a novel model based on Mumford-Shah functional for
segmentation [6]. This is also an energy minimization problem that can be reformulated
as a level-set formulation, leading to an easier way to solve the problem. In this report,
we will start with the Mumford-Shah model, its relation to Chan-Vese, the level-set
formulation approach for Chan-Vese, and finally some experiments and a few extensions
to multi-phase and RGB images.

2 Mumford-Shah Model

Let Ω be a bounded open set of R2, with ∂Ω as its boundary. Let f denote a grayscale
image on the domain Ω. The Mumford and Shah [6] model approximates the image f by
a piecewise smooth function u as the solution to the minimization problem

FMS(u,C) = argmin µLength(C) + λ

∫
Ω

(f(x)− u(x))2dx+

∫
Ω\C

|∇u(x)|2dx (2)

where C is an evolving curve. The first term in the equation penalizes the length of the
separating curves and encourages the creation of simple boundaries between the regions.
The second term is a data fidelity term that ensures that the segmented regions match the
background or noise of the original image. The third term penalizes image gradients and
encourages smoothness in the segmented regions. The Mumford-Shah equation suggests
selecting the edge set C as the segmentation boundary. The approximation solution to
Mumford-Shah was computed using the Ambrosio– Tortorelli method of Chan-Vese [2].

The algorithms for solving the general Mumford–Shah model tend to be relatively
complicated and computationally expensive. They also pointed out a reduced form of
this problem which is simply to restrict FMS to piecewise constant functions u, i.e., u = ci,
a constant on each connected components Ri of Ω\C. This reduced case is also called as
Minimal Partition problem. This simplified version can be written as -

FMS(u,C) = argmin µLength(C) + λ

∫
Ω

(f(x)− u(x))2dx (3)

In this case, C is necessarily the boundary of a closed set. However, this minimization
problem is non-convex. However, it was proved that there exists a solution to this problem
by Mumford and Shah [7]. Later on, a much simpler proof was given by Morel and
Solimini [4].

3 Chan-Vese Model

The active contour model of Chan-Vese is a particular case of minimal partition problem,
in which, we only look for the best approximation u of f , as taking only 2 values -

u =

{
c1, average of u0 inside C

c2, average of u0 outside C
(4)

2



There will be only 1 edge representing C. We can clearly see that Chan-Vese originally
applies single-phase segmentation. We will show in the next section how u comes out to
be like this.

There is an additional term added that penalizes the enclosed area. So the Chan-Vese
method is to find among all u that minimizes -

µLength(C) + ν Area(Inside(C)) + λ1

∫
inside(C)

|f(x)− c1|2dx+

λ2

∫
outside(C)

|f(x)− c2|2dx (5)

Similar to Mumford-Shah, the first term controls the regularity by penalizing the
length. The second term penalizes the enclosed area of C to control its size. The third
and fourth terms penalize the discrepancy between the piecewise constant model u and
the input image. The segmentation obtained by finding a local minimizer for this problem
is the best piece-wise two-phase constant approximation u of the image f . By using the
same proof of existence for Mumford-Shah by Morel and Solimini [4], we can also have
a proof of existence for Chan-Vese. This model was solved using a level-set formulation,
so we will be looking at the level-set formulation of this model in the next section.

An Intuitive Look at the Model

We have already talked about the first 2 terms of equation 5. Let’s look at the other 2
terms.

F1(C) =

∫
inside(C)

|f(x)− c1|2dx

F2(C) =

∫
outside(C)

|f(x)− c2|2dx

The first term can be interpreted as the force to shrink the contour. The second one
is responsible for increasing the contour. We can consider the following 4 cases -

Figure 1: Variation of forces F1 and F2
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When the boundary C is outside the object, then F2(C) ≈ 0 because f(x) ≈ c2
outside C. Inside the boundary C, there are 2 different values of image - black and grey,
therefore, F1(C) > 0.

Similarly, when the boundary is inside the object, f(x) ≈ c1, therefore F1(C) ≈ 0.
Also, when the boundary is half inside and half outside, then both forces will be positive.
In this case, the forces will tend to move the curve inside as well as outside (inside for
some parts and outside for some parts).

When the evolving curve reaches the actual boundary of the image, then both forces
will become 0. It is important to note that we haven’t yet considered the effect of
parameters λ1 and λ2. We can consider these as the strength factor that we want to give
to both forces. On increasing one, that particular force will be more strength than the
other, changing the final boundaries. In most of the cases, we simply use λ1 = λ2 = 1.

4 Level Set Formulation

To solve the minimization problem mentioned in equation 5, we need to minimize overall
possible set boundaries C. One easy way to do this is to use the level-set method intro-
duced by Osher and Sethian [9]. Here, we introduce a new function ϕ and define it such
that ϕ is 0 on C. Therefore,

C = {x ∈ Ω : ϕ(x) = 0} (6)

The inside and the outside of C are distinguished by the sign of ϕ. We choose ϕ to
be positive inside C and negative outside C.

Also, note that for a given C, there is more than one possible level set representation.
If ϕ is a level set function for Ω, then so is any other function ψ having the same sign.

sign(ψ(x)) = sign(ϕ(x)) (7)

For level set formulation, we will replace the variable C with the variable ϕ. Provided
that ϕ is smooth enough (Lipschitz continuous) and indeed a distance function, we can
replace term by term of equation 5.

• µ length(C) = µ . length{ϕ = 0}

• ν Area(Inside(C)) = ν . area{ϕ ≥ 0}

• λ1
∫
inside(C)

|f(x)− c1|2dx = λ1
∫
ϕ≥0

|f(x)− c1|2dx

• λ1
∫
outside(C)

|f(x)− c2|2dx = λ2
∫
ϕ<0

|f(x)− c2|2dx

Therefore, our new Chan-Vese equation becomes

F (ϕ, c1, c2) =µ length{ϕ = 0}+ ν area{ϕ ≥ 0}+

λ1

∫
ϕ≥0

|f(x)− c1|2dx + λ2

∫
ϕ<0

|f(x)− c2|2dx (8)
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To simplify further, we will need Heaviside function H and it’s derivative, Dirac
measure δ (concentrated at 0) -

H(t) =

{
1, t ≥ 0

0, t < 0
(9)

δ(t) =
d

dt
H(t) (10)

Now, we can simplify the terms of equation 8 even further as -

length{ϕ = 0} =

∫
Ω

|∇H(ϕ)|dx =

∫
Ω

δ(ϕ)|∇ϕ|dx

area{ϕ ≥ 0} =

∫
Ω

H(ϕ)dx

The area of the Ω is obtained in the second integral as the integral of H(ϕ). The first
integral containing the Dirac mass δ is not really an integral, but a curve integral along
the boundary C.

Also, the last two terms of equation 8 -

λ1

∫
ϕ≥0

|f(x)− c1|2dx = λ1

∫
Ω

|f(x)− c1|2H(ϕ)dx

λ2

∫
ϕ<0

|f(x)− c2|2dx = λ2

∫
Ω

|f(x)− c2|2(1−H(ϕ))dx

Thus, our final Chan-Vese equation after all these simplifications will become -

F (ϕ, c1, c2) = µ

∫
Ω

δ(ϕ)|∇ϕ|dx+ ν

∫
Ω

H(ϕ)dx+

λ1

∫
Ω

|f(x)− c1|2H(ϕ)dx + λ2

∫
Ω

|f(x)− c2|2(1−H(ϕ))dx (11)

We can solve the minimization problem of F using Lagrange’s multiplier method.
First, we differentiate with respect to c1 -

∂

∂c1
F = 2λ1

∫
Ω

(f(x)− c1)H(ϕ)dx = 0∫
Ω

(f(x)− c1)H(ϕ)dx = 0

c1 =

∫
Ω
f(x)H(ϕ)dx∫
Ω
H(ϕ)dx

(12)

Similarly, we can solve for c2 -

c2 =

∫
Ω
f(x)(1−H(ϕ))dx∫
Ω
(1−H(ϕ))dx

(13)
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If we look at c1 and c2 closely, they are just averages of f inside and outside the level
set.

c1 =

∫
Ω
f(x)H(ϕ)dx∫
Ω
H(ϕ)dx

= the average of u0 in {ϕ ≥ 0} (14)

c2 =

∫
Ω
f(x)(1−H(ϕ))dx∫
Ω
(1−H(ϕ))dx

= the average of u0 in {ϕ < 0} (15)

Now, if we keep c1 and c2 fixed and minimize the energy with respect to ϕ, we obtain
the Euler-Lagrange equation for ϕ -

∂

∂t
ϕ = δ(ϕ)

[
µdiv

(
∇ϕ
|∇ϕ|

)
− ν − λ1(f − c1)

2 + λ2(f − c2)
2

]
(16)

Now, we are good to apply these equations to an image to see the working of Chan-
Vese. But before that, we need to look at H and δ again. For theory, these work perfectly
fine but we need a slightly regularized version of these 2 functions for images case. This
is because they are difficult to use in numerical methods directly. The regularized version
helps the model represent the boundaries between the different regions in the image in a
smooth and continuous manner.

Regularized version of H and Dirac δ

There have been multiple regularized versions available for H and δ. A commonly used
H [11] is -

Hϵ(x) =
1

2

(
1 +

2

π
arctan

(
t

ϵ

))
(17)

It’s derivative δϵ is -

δϵ(t) =
d

dt
Hϵ(t) =

ϵ

π(ϵ2 + t2)
(18)

Figure 2: a) Regularized H b) Regularized Dirac

If we look closely at the regularized versions, we can see that they are actually second
approximations. There is a very good reason that we didn’t use the first approximation.
Since our energy equation is non-convex, and the first approximation for δ has very small
compact support, the interval [−ϵ, ϵ], the iterative algorithm may depend on the initial
curve and may not compute global minimizer.
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We need to pick some initialization for the contour. A good choice is the function -

ϕ(x) = sin(
π

5
x) sin(

π

5
y) (19)

It defines the initial segmentation as a checkerboard image. This initialization has
been shown to have fast convergence.

5 Numerical Implementation

We will look at how to implement the method numerically. There are various methods
to numerically solve the problem. He and Osher [3] proposed a topological derivative
approach, and Badshah and Chan [5] developed a multigrid approach. Here, we will only
discuss the original approach as given by Chan and Vese.

Assume that f is sampled on a regular grid Ω = {0, ...,M}×{0, ...,M}. The evolution
of ϕ is discretized in space according to -

∂ϕi,j

∂t
= δϵ(ϕi,j)

µ
∇−

x

∇+
x ϕi,j√

η2 + (∇+
x ϕi,j)2 + (∇0

yϕi,j)2
+∇−

y

∇+
y ϕi,j√

η2 + (∇0
xϕi,j)2 + (∇+

y ϕi,j)2


+δϵ(ϕi,j)

[
ν − λ1(fi,j − c1)

2 + λ2(fi,j − c2)
2
]

(20)

where i, j = 1, 2, ...,M −1, ∇+
x denotes the forward difference in the x-dimension, ∇−

x

denotes backward difference, ∇0
x = (∇+

x + ∇−
x )/2 is central difference. The same holds

for y-direction. η is just to prevent division by 0. Let

Ai,j =
µ√

η2 + (∇+
x ϕi,j)2 + (∇0

yϕi,j)2
(21)

Bi,j =
µ√

η2 + (∇0
xϕi,j)2 + (∇+

y ϕi,j)2
(22)

then, we can write the discretization as -

∂ϕi,j

∂t
= δϵ(ϕi,j) [Ai,j(ϕi+1,j − ϕi,j)− Ai−1,j(ϕi,j − ϕi−1,j)]

+ δϵ(ϕi,j) [Bi,j(ϕi+1,j − ϕi,j)−Bi−1,j(ϕi,j − ϕi−1,j)] (23)

− δϵ(ϕi,j)
[
−ν − λ1(fi,j − c1)

2 + λ2(fi,j − c2)
2
]

On the right-hand side, the first two terms discretize the curvature.

div

(
∇ϕ
|∇ϕ|

)
= ∂x

(
∂xϕ√

(∂xϕ)2 + (∂yϕ)2

)
+ ∂y

(
∂yϕ√

(∂xϕ)2 + (∂yϕ)2

)

≈ ∇−
x

∇+
x ϕi,j√

η2 + (∇+
x ϕi,j)2 + (∇0

yϕi,j)2
+∇−

y

∇+
y ϕi,j√

η2 + (∇0
xϕi,j)2 + (∇+

y ϕi,j)2

(24)
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We can see a mix of various differences. This is just so that the combined result is
centered yet better localized than simply using centered differences for each derivative. In
the first term, the numerator ∇+

x ϕi,j is logically centered at (i+1/2, j). The denominator
is selected as (∇+

x ϕ)
2 + (∇0

yϕ)
2 so that it, and hence the quotient is centered at (i, j) as

desired.
The time is discretized with a Gauss-Sidel method. The values ϕi,j, ϕi−1,j, ϕi,j−1 are

evaluated at time-steps n+ 1 and all other time-steps n.

∂ϕi,j

∂t
=
ϕn+1
i,j − ϕn

i,j

dt
(25)

The boundary conditions are enforced by duplicating the pixels near the borders.

ϕ−1,j = ϕ0,j, ϕM,j = ϕM−1,j, ϕi,−1 = ϕi,0, ϕi,M = ϕi,M−1

We can always reinitialize the level set function after every N iteration by replacing
the ϕ with the signed distance function to C or any other function having the same
sign at each point. This change does not modify the segmentation boundary itself, but
it prevents new components from appearing far away from the current boundary. The
termination condition can be to check the difference between two consecutive ϕ and stop
if that is below a certain threshold.

6 Experiments

In this section, we will present various results. The whole point of the paper is that the
model can detect boundaries without using gradient information.

Figure 3: This is to illustrate the fact that the model can detect boundaries without using
the gradient. The top row represents evolving contour and the bottom row represents
piecewise constant approximations: c0 and c1

In figure 3, we can see that the image has various convexities and an interior contour
which is automatically detected. Here, we started with a circle as the initial contour.
However, the position of the initial contour is not important in this case.

Another good application of Chan-Vese is the case of noisy images. Also, note that
the model is able to detect the internal boundary of the torus.
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Figure 4: Working of Chan-Vese in case of noisy image

Next, we try on a real image of a heart. We can see in figure 5 that the model is able
to separate the chambers but still, both the chambers themselves aren’t separated.

Figure 5: Chan-Vese on a real image of a heart

Let’s try one more real image, this time a brain.

Figure 6: Brain Image segmentation

We can see that for the brain image, the segmentation looks pretty good as it is
separating the grey matter. We can also take a look at a random image not related to
Medical 7. We have used a checkerboard-based initial contour.
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Figure 7: Wrench with a checkerboard initial contour

6.1 Varying the parameter µ

In equation 11, there are 2 important parameters µ and ν. First, we will show the effect of
varying µ. It basically controls the length of the curve. So the intuition is that increasing
µ will produce smoother boundaries and decreasing µ will give more accurate boundaries
but more segmented. The exact same is depicted in figure 8.

Figure 8: Effect of increasing µ

6.2 Varying the parameter ν

The next parameter to test is ν. Again looking at equation 11, we can see that ν controls
the area under the boundary C. So if we increase ν too much, the area inside the boundary
C should keep on decreasing and at some point approach 0. This is exactly the case in
figure 9.

Figure 9: Effect of increasing ν
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6.3 Different Initializations

Till now, we have been using some initialization - circle, checkerboard, etc., but we haven’t
seen if it makes a difference. Let’s compare two popular ones - checkerboard and circle.

Figure 10: Effect of different initialization and reinitialization

We can control the objects that we want to segment using the initial contour. Reini-
tialization may need to be used to avoid including separate objects. If we look at the
second and third columns, if we reinitialize the contours after 2000 iterations we can avoid
the segmentation of the second fish.

6.4 RGB Images Segmentation

Original Chan-Vese works for gray-scale images. However, we can extend it for 3-D images
easily. In the section on the intuitive explanation of the model, we have looked that we
can view the model as the result of two forces - one pushing the boundary inside and the
other pulling outside. If we wish to apply the model to a 3-D image, we can simply apply
the model to each of the 2-D images, compute the resultant F1 and F2 forces and use the
resultant force to move the boundary.

Figure 11: Chan-Vese Extension to RGB Images
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Figure 12: Chan-Vese Extension to RGB Images

6.5 Multi-phase Segmentation

We have looked at only binary segmentation till now. However, we can extend the
algorithm for multi-phase segmentation as well. Basically, the algorithm will group the
regions to their different mean value and if two regions have a close mean value than
other colors, these two colors will be grouped into one. It will be more helpful if we look
at a few examples.

Figure 13: Multi-phase Segmentation

Figure 14: Multi-phase Segmentation

7 Conclusion

In this report, we have looked at the Active Contour model proposed by Chan-Vese,
and how it differs from classical active contour models. We can detect objects whose
boundaries are not necessarily defined by gradient or with very smooth boundaries. We
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also looked at the application of active contours to noisy images. Later, we extended the
model to 3-D images and multi-phase segmentation as well. There have been multiple
developments based on this model. Tsai, Yezzi, and Willsky [10] developed a general-level
set curve evolution framework similar to Chan–Vese. Chan-Vese has given a good base
for many segmentation algorithms.
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